Modeling Head-Related Transfer Functions Based on Pinna Anthropometry

نویسندگان

  • Navarun Gupta
  • Maroof Choudhury
چکیده

The use of Head-Related Transfer Functions (HRTFs) in creating 3D sounds is gaining wide acceptance in multimedia applications. This paper presents a new method of modeling HRTFs based on the shape and size of the outer ear. Using signal processing tools, such as Prony’s signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured HeadRelated Impulse Responses (HRIRs). HRIRs represent HRTFs in time domain. Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield “Model HRTFs” that can create elevation effects. Listening tests conducted on 10 subjects showed that these model HRTFs were 5% more effective than generic HRTFs in the frontal plane. This model is a simple, yet effective method of creating customizable HRTFs. It reduces the computational and storage demands, while preserving a sufficient number of perceptually relevant spectral cues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency Estimation of the First Pinna Notch in Head-related Transfer Functions with a Linear Anthropometric Model

The relation between anthropometric parameters and Head-Related Transfer Function (HRTF) features, especially those due to the pinna, are not fully understood yet. In this paper we apply signal processing techniques to extract the frequencies of the main pinna notches (known as N1, N2, and N3) in the frontal part of the median plane and build a model relating them to 13 different anthropometric...

متن کامل

Structural Composition and Decomposition of Hrtfs

The analysis and modeling of the response of parts of the body provides valuable insight into many features of the head-related transfer function (HRTF). In spatial sound simulations, partial models, such as the spherical head model, can also generate simple and effective approximate localization cues. In this paper, we consider the composition of an approximate HRTF from the responses of struc...

متن کامل

Free-Field Virtual Psychoacoustics and Hearing Impairment: Paper ICA2016-53 Measurement of pinna flare angle and its effect on individualized head-related transfer functions

Head-related transfer functions (HRTFs) are essential to the researches of binaural hearing and applications of virtual auditory display. Generally, HRTFs vary with frequency as well as source position relative to head centre. They also depend on anatomical structure and parameters of individual subject. The related anatomical parameters mainly include the dimensions of head and pinnae, and the...

متن کامل

Using computer vision to generate customized spatial audio

Creating high quality virtual spatial audio over headphones requires real-time head tracking, personalized head-related transfer functions (HRTFs) and customized room response models. While there are expensive solutions to address these issues based on costly head trackers, measured personalized HRTFs and room responses, these are not suitable for widespread or easy deployment and use. We repor...

متن کامل

Mechanism for generating peaks and notches of head-related transfer functions in the median plane.

It has been suggested that the first spectral peak and the first two spectral notches of head-related transfer functions (HRTFs) are cues for sound localization in the median plane. Therefore, to examine the mechanism for generating spectral peaks and notches, HRTFs were calculated from four head shapes using the finite-difference time-domain method. The comparison between HRTFs calculated from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004